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Abstract

In the past 100 years, the annual global temperature has increased by almost 0.5ºC and is expected to 
increase further with time. This increase in temperature negatively affects the management of water resources 
globally as well as locally. Rain is an important phenomenon for agriculture, particularly in hilly areas where 
there is no feasible irrigation system. The present study is concerned with the analysis and modeling of the 
rain pattern, its variability, and prediction of monthly number of rainy days for the Abbottabad District, 
which is considered to be one of the greenest and most beautiful areas of Khyber Pakhtunkhwa, Pakistan, 
by incorporating both parametric and nonparametric techniques. Non-parametric statistical techniques are 
used for movement detection and significance testing; in this context, statistical tests were incorporated  
for inspection of homogeneity of rainy days among successive periods. A time series data for the period 
1971-2013 was analyzed. Box Jenkins methodology and time series decomposition were applied for fitting 
the selected model, which was assessed for forecasting the monthly number of rainy days for 2015-2020.  
In this study several time series parametric and non-parametric approaches were applied to model rainfall 
data. The results showed that SARIMA (1, 0, 1) (0, 1, 1) was a better choice in predicting the monthly 
number of rainy days. Further analysis of the data suggests that January, March, May, July, and December 
have a considerable declining tendency in the number of rainy days.
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Introduction

Pakistan is a developing country whose economy 
depends mainly on agriculture, a sector that is more 
susceptible to climate change than others, as 70% of the 
country’s population depends on this sector. In Pakistan, 
agriculture makes a significant contribution to the 
total gross domestic product (GDP), about 21.46%. In 
consequence, agricultural planners are always keen in 
boosting its contribution to the country’s development 
[1]. Because crops mostly depend on rainfall, its analysis 
gains relevance. The only costless indicator accountable 
for enhancing production of crops is precipitation [2]. 
Pakistan has been severely affected by floods in the recent 
past, especially by the flood of 2010 that was caused by 
historical rains that hit Khyber Pakhtunkhwa and Punjab 
[3].

Decreasing the amount of rainfall may cause drought. 
There could be severe impacts of drought on human health 
such as respiratory problems, mental health, illnesses, 
food, and water security problems and infectious diseases 
[4].

The aim of this study was to analyze the monthly number 
of rainy days for Abbottabad, Khyber Pakhtunkhwa City,  
Pakistan, located at coordinates 34°11′0″N, 73°15′0″E, 
and elevation of 1,300 m, with 30,000 inhabitants. This 
city is important for Pakistan due to its pleasing typical 
weather and its high-standard learning institutions and 
military establishments (Pakistan Military Academy) 
located in the eastern side of the valley. It is a popular hill 
station that attracts thousands of tourists each year [5]. Its 
annual rainfall average is 1,193.8 mm, while in monsoon 
(July and August) 635 mm of precipitation falls [1]. 

A study [6] reported that hourly rainfall data follows 
the autoregressive moving average (ARMA) process. 
Hourly rainfall data was modelled for two stations in the 
USA and several stations of Italy, which revealed that 
an event-based estimation procedure presents a better 
forecast. 

Several researchers have investigated annual 
precipitation trends for various regions of Italy: [7] found 
a significant negative precipitation trend for Basilicata 
region while [8] and [9] reported a significant negative 
precipitation trend for the Sicily region.

Study [10] examined rainfall for the Dodoma 
region of Tanzania. The amount of rainfall in 1981-
2010 was analyzed and fitted a linear regression to test 
the significance of time trend. The Kruskal-Wallis and 
Mann-Kendall tau test statistics were also employed for 
trend detection and testing the homogeneity of mean 
rainfall. The author concluded that mean annual rainfall 
through the period 1981-2010 displayed a declining non-
significant drift. In study [11] the researchers used 40 years 
of monthly rainfall data for six stations of western India. 
They applied a Modified Mann-Kendall test and Thiel 
Sen’s slope estimator, and they developed a Box-Jenkins 
autoregressive integrated moving average (ARIMA) 
model for forecasting. The analysis suggested an overall 
positive trend. 

Material and Methods

Time series data for the monthly number of rainy 
days for Abbottabad in 1971-2013, taken from Regional 
Meteorology Department Peshawar, Pakistan, were 
selected for analyzing and forecasting the precipitation 
trend. For this purpose, a day is considered rainy if the 
amount of rainfall is 2.5 mm or more [12]. The programs 
used were Minitab 17, Gretl 1.9.8, and MS Excel 2007. 
Both parametric and non-parametric statistical techniques 
were incorporated in the analysis. A brief introduction of 
these techniques is given in the next section. 

The Box-Jenkins methodology consists of four 
stages: identification, estimation, diagnostic check, and 
forecasting. The first plot of ACF and PACF is constructed. 
This not only tells about the stationarity of the series but it 
also identifies the parameters of the models: autoregressive 
(AR) terms, moving average (MA) terms, and order of 
the differencing (d) for the non-seasonal model, which is 
written as ARIMA (p, d, q; p = order of autoregressive 
term and q = order of moving average term). When the 
data exhibit seasonality and the purpose is to utilize 
this behavior, then the SARIMA model is used. The 
multiplicative seasonal arima is known as SARIMA (P, 
D, Q) * (p, d, q; p = seasonal autoregressive, q = seasonal 
moving average component, and d = seasonal difference). 
In the backshift notation the SARIMA model without 
intercept is given as follows: 

     (1)

       (2)

(3)

(4)

(5)

…where φAR, ФSAR, θMA, ӨSMA and represent non-seasonal 
autoregressive operator, seasonal autoregressive operator, 
non-seasonal moving average operator, and seasonal 
moving average operator respectively; “s” is the number 
of periods per season. For seasonal model, the significance 
of seasonal lags are considered; for this case, if monthly 
data is used then the significant behavior of lag12, lag24, 
lag36, and so on are used for modeling. If the data is 
collected quarterly, then lag4, lag8, lag12, and so on are 
used for model fitting.

For non-seasonal, a pure AR model is fitted if 
autocorrelation decays geometrically, while a pure 
MA model is fitted if partial autocorrelation decays 
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geometrically. If both autocorrelation and partial 
autocorrelation decay exponentially, then the ARMA 
model is fitted. The parameters of autoregressive (both AR 
and Seasonal AR) and moving average (MA Seasonal MA) 
components are estimated generally by applying the least 
square technique and maximum likelihood estimation. 

Decomposition

Decomposition is concerned with disintegrating time 
series observations into trend, seasonal, and random 
components:

Yt = Tt + St + Et

…where Yt is the value of time series variable at time t, 
and Tt, St, and Et are the trend component, seasonal effect, 
and random error, respectively, at time t. This technique 
fits the trend line to the seasonal adjusted data; further 
seasonal indices are computed to de-trended data, which 
is the seasonal effect at that time.

Seasonal index = average of season – overall average

Finally, it computes estimation (prediction) by adding 
(multiplying) appropriate seasonal indices to the trend-
computed values (depending on whether the model is 
additive or multiplicative).

Thiel Sen’s Estimator

Thiel Sen’s estimation is a non-parametric technique 
used for finding the slope of the time series; in order to 
calculate this estimator for slope of the trend equation, all 
possible slopes are computed using the formula:

j k
i

x x
m

j k
−

=
−

 For all j > k and i =1, 2, 3..., N (N = number of 
observations). 

Median of all slopes is the slope of Thiel Sen’s 
estimator.

Mann-Kendall Trend Test

The Mann-Kendall (MK) test is a non-parametric 
test widely used for trend detection (not necessarily 
linear) of time series data, when the assumptions of 
homoscedasticity and normality are not satisfied, and data 
show missing values and outliers. The test statistic to be 
used is S, calculated as follows:

1

1
( )

N N

j k
k j k

S sign x x
−

= +

= −∑ ∑

…where xj and xk are the values of the series at time j and 
k, for all j greater than k. The total number of observations 
is N. The sign function is as follows:

When the size of the series is large with N greater than 
10, then the distribution of S is approximately normal with 
mean equal to zero and variance given by:

Here tk represents the number of ties of kth observation. 
Then the Z-test is as follows:

This is a two-tailed test. The null hypothesis is rejected 

if 
 

, where α is the size of critical region [13].

Kruskal-Wallis Test

The Kruskal-Wallis test is a non-parametric alternative 
to the one-way analysis of variance. It is used to test 
whether K sample came from the same distribution, as 
samples share the same median. The test statistic to be 
used is: 

Under the null hypothesis of the same median, statistic 
H is a chi square distribution with (k-1) degrees of 
freedom; in this test, nj is the number of observations in 
collection j, while N is the number of total observations in 
all the collections.

Rj = Sum of ranks of the nj observations 
of the collection j (= 1, 2, 3, 4…)

In this paper, the data period (1971-2013) were divided 
into five time periods (1971-79, 1980-88, 1989-97, 1998-
2006, and 2007-13). The null hypothesis to be tested was 
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that the monthly numbers of rainy days follow the same 
distribution in the five time periods (t1, t2, t3, t4, t5) [11].

Results and Discussion

Descriptive statistics computed for the monthly 
number of rainy days for 1971-2012 are shown in Table 
2. It is evident from the correlogram in Fig.1 that data 
shows strong seasonality, hence a seasonal difference was 
assumed to make it stationary. The correlogram in Fig. 2 
was constructed after accepting seasonal difference. Table 
3 shows the result of the augmented Dicky Fuller test that 
was applied before and after taking seasonal difference. 
The result suggests that the series is stationary after 
seasonal differencing.

Identification of the Model

In Fig. 2 it is noticeable that autocorrelation (ACF) 
dies down, which suggests that q = 0; similarly, partial 

autocorrelation (PACF) also dies down, suggesting  
p = 0. On the other hand, the autocorrelation at lag 
12 (seasonal lag) was significant but non-significant at 
seasonal lag24. ACF at seasonal lags is dying down, while 
partial autocorrelations at lag 12, lag 24, and lag 36 were 
significant. This suggests Q = 1 and P = 0. So the tentative 
model is SARimA (0,0,0)(0,11)12.

Besides this model, other models in the neighborhood 
were also fitted. Table 4 shows the best models on 

Table 1. Patterns of ACF and PACF.

Table 4. Models with minimum AIC value.

Table 5. SARimA (1, 0, 1) (0, 1, 1).

Table 2. Descriptive statistics.

Table 3. Unit root test.

Type of model Trend of ACF Trend of PACF

AR(P) Decays 
exponentially  

Cuts up after P 
seasonal lags 

MA(Q) Cuts up after Q 
seasonal lags 

Decays 
exponentially

ARMA(P, Q) Decays 
exponentially

Decays 
exponentially

Fig. 1. Correlogram at level.

Fig. 2. Correlogram after seasonal difference.

Mean Median Minimum Maximum

9.58929 9.00000 0.000000 27.0000

Std. Dev. C.V. Skewness Kurtosis

5.22381 0.544755 0.389920 -0.171064

Test at level Test after seasonal 
difference

Test statistic -0.881377 Test statistic -13.7863

p-value 0.3344 p-value

Truncated lag 10 Truncated lag 10

Remarks There is a 
unit root Remarks Series is 

stationary

S. no Model AIC

1 SARimA (1,0,1)(0,1,1)12 2,744.235

2 SARimA (1,0,1)(1,1,1)12 2,745.301

3 SARimA (1,0,1)(0,1,2)12 2,745.434

4 SARimA (1,0,1)(2,1,1)12 2,744.956

Model Parameter Estimate z-value p-value

SARimA 
(1,0,1)

(0,1,1)12

AR1 0.845982 6.7063 <0.00001

MA1 -0.777589 -5.3055 <0.00001

SMA1 -0.942366 -27.8174 <0.00001
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the basis of minimum AIC value. It is evident from  
Table 4 that the value of AIC was the smallest for SARimA 
(1, 0, 1) (0, 1, 1).  

Numerical Diagnostics

Results of the Ljung Box test were non-significant  
at all lags, as they did not show a serial correlation 
among the errors (Table 6). Table 7 contains the result of 
the Jarque-Bera test of normality for residuals showing 
normality.

Decomposition

The trend equation fitted to the series after seasonal 
adjustment is: 

Yt = 10.438 – (0.00336) * t

The negative slope indicates that rainy days decrease 
by 0.00336 for unit change in time when seasonal effect is 
eliminated. In Table 8, the seasonal indices refer to changes 
occurring in data for the selected period (month), which 
are negative for January, May, and September-December. 
The trend suggests that mean rainy days decreases in these 

months on average, as compared with overall data. The 
maximum decrease is observed for November (Seasonal 
Index = -6.858).

The seasonal indices are positive for the periods of 
February-April and June-August, and the highest index 
is for the month of July (Seasonal Index = 7.684), which  
is the first month of the monsoon rainy season in 
Abbottabad.

Forecast Accuracy Comparison of SARIMA 
and Decomposition

Table 9 was constructed for comparing the forecasting 
accuracy of the fitted models using MFE (mean forecast 
error), MAFE (mean absolute forecast error), SSFE (sum 
of square of forecast error), and MSFE (mean square 
forecast error). From Table 9 it can be inferred that 

Table 6. Modified Box-Pierce (Ljung-Box) test.

Table 7. Jarque-Bera test for normality.

Table 8. Seasonal indices for rainy days of Abbottabad.

Table 9. Comparison of forecast errors.

Fig. 3. Correlogram of residual.

Lag 12 24 36 48 60

Chi-Square 5.0444 13.5699 19.1297 24.0106 37.4240

P-Value 0.956 0.675 0.990 0.999 0.990

Test statistic 0.435651

p-value 0.804266

Conclusion Data is normally distributed

Period January February March April May June

Seasonal index -1.191 1.017 3.726 1.809 -0.233 0.726

Period July August September October November December

Seasonal index 7.684 2.976 -1.066 -4.024 -6.858 -4.566

Model MFE MAFE SSFE MSFE

SARimA (1,0,1)(0,1,1)12 -0.04858 2.223182 129.1306 10.76088

Decomposition 0.694914 2.582516 161.0717 13.42265
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the error measurements for the SARIMA model are a 
minimum. Hence, the SARIMA model provides a better 
fit in the current study. 

Table 10. Forecasted monthly number of rainy days for the period 2015-20.

Table 12. Periods, sample size, and median for Kruskal-Wallis 
test.

Table 11. Sen slope and Mann-Kendall tests.

Month 2015 2016 2017 2018 2019 2020

January 7.42138 7.41536 7.41456 7.41445 7.41443 7.41443

February 10.1627 10.1576 10.1569 10.1568 10.1568 10.1568

March 11.9253 11.9210 11.9204 11.9203 11.9203 11.9203

April 11.3333 11.3296 11.3291 11.3291 11.3291 11.3291

May 8.56628 8.56320 8.56279 8.56273 8.56272 8.56272

June 10.1951 10.1925 10.1921 10.1921 10.1921 10.1921

July 16.1853 16.1831 16.1828 16.1828 16.1828 16.1828

August 13.1412 13.1393 13.1391 13.1390 13.1390 13.1390

September 8.98336 8.98179 8.98157 8.98155 8.98154 8.98154

October 5.09732 5.09599 5.09581 5.09579 5.09578 5.09578

November 3.37855 3.37742 3.37727 3.37725 3.37724 3.37724

December 5.06999 5.06903 5.06890 5.06888 5.06888 5.06888

Fig. 4. Time series graph for 1971-2020.

Month Sen slope Mann-Kendall statistic p-value Remarks

January -0.0667 -2.002* 0.0226 Significant decreasing trend

February -0.0357 -0.885 0.1880 Non-significant increasing trend

March -0.1200 -1.777* 0.0378 Significant decreasing trend

April 0 -0.494 0.3110 Non-significant decreasing trend

May -0.0870 -1.795* 0.0364 Significant decreasing trend

June 0.0250 0.802 0.2110 Non-significant increasing trend

July -0.1000 -1.787* 0.0370 Significant decreasing trend

August 0 -0.3260 0.3720 Non-significant decreasing trend

September 0 -0.2320 0.4080 Non-significant decreasing trend

October 0 -0.4550 0.3250 Non significant decreasing trend

November 0 0.2640 0.3960 Non-significant increasing trend

December -0.0909 -1.7050* 0.0441 Significant decreasing trend

Periods Sample size Median Average rank

1971-79 108 10 265.7

1980-88 108 9 263.0

1989-97 108 10 275.6

1998-2006 108 9 237.7

2007-13 84 9 248.2
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Forecast with SARimA (1, 0, 1) (0, 1, 1)

Table 10 shows the forecasted monthly number of 
rainy days for 2015-20 by applying SARimA (1, 0, 1) (0, 
1, 1). Fig. 4 shows the complete graph for 1971-2020, 
where observed series consist of the period 1971-2012 and 
the forecast period 2013-20. The shaded area refers to the 
forecasted prediction interval.

Non-parametric Analysis

Table 11 shows that the Mann-Kendall test for negative 
trend was significant only for January, March, May, July, 
and December – months when the monthly number of 
rainy days declined. Kruskal-Walls test was applied on 
the data for 1971-2013 (Table 12). The Kruskal-Wallis 
test results were applied with and without adjusting 
matched observations (Table 13). Based on the outcome 
of the Kruskal-Wallis tests, we concluded that the monthly 
number of rainy days follows almost the same pattern.

 

Conclusion

In Pakistan’s Abbottabad District, agricultural 
production is highly vulnerable to rainfall variability. In 
consequence, farmers in this area are eventually affected 
by changes in the rainfall pattern. This study evaluated the 
pattern, variability, and trend of the number of rainy days 
based on past data to help farmers with information about 
possible climate change in the future. 

In this paper, data on the monthly number of rainy days 
were analyzed by applying time series analysis and a non-
parametric approach. Several SARIMA models were fitted 
and the best models were chosen. It was concluded that 
SARIMA was a better choice in predicting the monthly 
number of rainy days as compared to decomposition. 
Forecasts for the period 2015-20 were also obtained and 
presented, and are expected to be very useful for future 
planning and policy making. 

Analysis of the data suggests that January, March, 
May, July, and December have a considerable declining 
tendency in the number of rainy days. Additionally, it was 
assessed that the distribution of monthly number of rainy 
days is identical among different time periods.

Based on the findings of this study, we recommend 
planning at all levels for risks involved in climate change 
and to help farmers face the declining effects of the number 

of rainy days. Such information is required to be conveyed 
and propagated on time in order to increase its practical 
significance to the general public and to farmers. Investing 
in new irrigation schemes is recommended, particularly 
for those months where there is a declining trend in the 
amount of rainfall. 

Abbreviations 

ACF - Autocorrelation Function
PACF - Partial Autocorrelation
AR - Autoregressive
SAR - Seasonal Autoregressive
MA - Moving Averages
SMA - Seasonal Moving Average
ARIMA - Autoregressive Integrated Moving Average
SARIMA - Seasonal autoregressive integrated moving 
average
MK – Mann-Kendall
AIC - Akaike Information Criterion
GDP- Gross Domestic Product
MFE - Mean forecast error
MAFE - Mean absolute forecast error
SSFE - Sum of square of forecast error
MSFE - Mean square forecast error
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